Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy.
نویسندگان
چکیده
The ex vivo effects of passive mechanical stretch on the activation of nuclear factor-kappaB (NF-kappaB) pathways in skeletal muscles from normal and mdx mouse, a model of Duchenne muscular dystrophy (DMD), were investigated. The NF-kappaB/DNA binding activity of the diaphragm muscle was increased by the application of axial mechanical stretch in a time-dependent manner. The increased activation of NF-kappaB was associated with a concomitant increase in I-kappaB (IkappaB) kinase activity and the degradation of IkappaBalpha protein. Pretreatment of the muscles with nifedipine (a Ca2+ channel blocker) and gadolinium(III) chloride (a stretch-activated channel blocker) did not alter the level of activation of NF-kappaB, ruling out involvement of Ca2+ influx through these channels. Furthermore, N-acetyl cysteine, a free radical inhibitor, blocked the mechanical stretch-induced NF-kappaB activation, suggesting the involvement of free radicals. Compared with normal diaphragm, the basal level of NF-kappaB activity was higher in muscles from mdx mice, and it was further enhanced in mechanically stretched muscles. Furthermore, activation of NF-kappaB and increased expression of inflammatory cytokines IL-1beta and tumor necrosis factor alpha in the mdx mouse precede the onset of muscular dystrophy. Our results show that mechanical stretch activates the classical NF-kappaB pathway and this pathway could be predominately active in DMD.
منابع مشابه
Genetic silencing of Nrf2 enhances X-ROS in dysferlin-deficient muscle
Oxidative stress is a critical disease modifier in the muscular dystrophies. Recently, we discovered a pathway by which mechanical stretch activates NADPH Oxidase 2 (Nox2) dependent ROS generation (X-ROS). Our work in dystrophic skeletal muscle revealed that X-ROS is excessive in dystrophin-deficient (mdx) skeletal muscle and contributes to muscle injury susceptibility, a hallmark of the dystro...
متن کاملmicroRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice.
Skeletal muscle injury activates adult myogenic stem cells, known as satellite cells, to initiate proliferation and differentiation to regenerate new muscle fibers. The skeletal muscle-specific microRNA miR-206 is upregulated in satellite cells following muscle injury, but its role in muscle regeneration has not been defined. Here, we show that mi...
متن کاملLoss of Calpain 3 Proteolytic Activity Leads to Muscular Dystrophy and to Apoptosis-Associated Iκbα/Nuclear Factor κb Pathway Perturbation in Mice
Calpain 3 is known as the skeletal muscle-specific member of the calpains, a family of intracellular nonlysosomal cysteine proteases. It was previously shown that defects in the human calpain 3 gene are responsible for limb girdle muscular dystrophy type 2A (LGMD2A), an inherited disease affecting predominantly the proximal limb muscles. To better understand the function of calpain 3 and the pa...
متن کاملP164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...
متن کاملDystrophin protects the sarcolemma from stresses developed during muscle contraction.
The protein dystrophin, normally found on the cytoplasmic surface of skeletal muscle cell membranes, is absent in patients with Duchenne muscular dystrophy as well as mdx (X-linked muscular dystrophy) mice. Although its primary structure has been determined, the precise functional role of dystrophin remains the subject of speculation. In the present study, we demonstrate that dystrophin-deficie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2003